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Abstract

Earth observation using small satellites is leaving demonstration status and being proposed for more and more
commercial applications. By analysing such a service from both end-user and satellite operator point-of-view, it
is hoped to provide the information such as service performance, on-board resource status and key parameters
for system optimisation before the spacecraft is designed, launched and put into service.
In this paper, queueing theory, traditionally used to perform traffic and efficiency analysis in tele-communication
and other queueing system, is applied in this new area - a commercial imaging service using small satellites.
The introduction of queueing theory in our application will eliminate the main difficulty of using the traditional
solution - operation simulation which is huge computational complexity that arises when the operation spans
a long period. In this paper, only the imaging download process, which is usually the system bottleneck for
Low Earth Observation spacecraft, will be analyzed. Unlike traditional queueing systems where the service is
continuous, our application suffers regular idle periods when the satellite is not visible from the ground-station
for image download. The distribution and duration of such idle periods are the subject of orbital-dynamics.
Therefore available queueing theory is not applicable directly and needs some extension to handle this specific
problem of satellite imaging services. In this paper, three queueing models are discussed: M/G/1, M/Gx/1 and
GI/G/1 together with the analysis of their suitability to our application. An extension to using M/Gx/1 is
outlined which can provide a better approximation of the service than traditional queueing models. Some basic
service parameters, such as queue length distribution, mean service occupation and mean service waiting time,
can thereby be calculated. All results presented are compared with that from operation simulation. Limitation
and constraints of using queueing theory in this application are also discussed. As a conclusion of this research
work, it is shown that queueing theory will be appropriate for the early stage performance analysis in a quick but
gross manner which can provide some basic performance parameters, while operation simulation can be treated
as a refinement and a method capable of providing more complete solutions that will certainly take much longer
time.

1 Introduction

More and more space applications are emerging whilst
satellites tend to be smaller in size, faster in manufac-
turing and more enhanced in functionalities. Among
these applications, Earth Imaging and Observation[1][2]
is one of the most important. This application is leav-
ing experimental and demonstrating status and enter-
ing commercial usage phase. Several proposals, such
as, GANDA[3], Disaster Monitoring system[5][4], are
at implementation phase and have attracted growing
interest from all over the world. Because of this ad-
vent of the era of Earth observation using small satel-

lite for commercial service, it is desirable to analyse
the imaging service as an individual topic. This kind of
analysis will hopefully provide the system designer with
information such as Service performance, On-board re-
sources management and furthermore, key parameters
for system optimisation.

For a typical imaging system in commercial appli-
cations, the data flow is described in figures 1. Firstly,
user submits his imaging request including satellite in-
formation, ground target latitude, longitude, illumina-
tion requirement and preferred imaging time window.
The request or correspondent schedule file will be up-
loaded to the satellite. According to the schedule, satel-
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Figure 1: Satellite Imaging Service Data Flow - Two Subse-

quent Queues

lite will take image of the specific ground target. This
is the first phase of satellite imaging service. Consid-
ering the small size of such request, even with limited
system uplink capacity, it won’t lead to siginificant de-
lay for satellite to obtain the request. Meanwhile cam-
era on-board can be operated continuously and thus
the performance of this phase is largely independent of
the occurrence rate of user requests. The second phase
starts from the end point of the first phase, that is,
the time an image being stored in the onboard RAM
disk. After this, image will be downloaded when the
satellite is seen by a groundstation as earlier as possi-
ble. The downloading discipline is generally according
to their sequence of hitting the RAM disk. Since an
image could contain huge amount of data and small
satellite only has low-band width downlink, the second
phase will be the bottleneck of the system and therefore
will be the main focus of our analysis.

1.1 Simulate to analyse the imaging ser-
vice

There are two methods to analyse the satellite imaging
service. First one is the traditional method that we
can directly simulate the system status by using either
traditional satellite orbit propagator SGP4[6] or the
satellite orbit estimation programme FPSCA[9][10], in
which the latter is much faster then the previous one[8].

To carry out the simulation, we first generate a set
of random numbers corresponding to the time when
users put their requests. These random numbers fol-
lows Poisson distribution. The reason why we can make
this assumption is based on the nature of user request
and properties of Poisson distribution[11]. Then a set
of random ground targets will be created, correspond-
ing to every user’s request respectively. Without loos-
ing universality, we assume these targets follow uniform
distribution.

Figure 2: Satellite Onboard Image Queue Length: image arriv-

ing rate=20images/day

Figure 3: Satellite Onboard Image Queue Length: image arriv-

ing rate=35images/day

After this, we select a satellite and a NORAD file[7],
which provides the orbit parameters of the satellite. By
using FPSCA, we can predict the image taken and
downloaded time. When the program is running, we
record system status in very small time interval. Fi-
nally, by post-processing these system states logging
information, we can work out on-board image queue
length distribution and service waiting time distribu-
tion, etc. The following figures show the changes of im-
age queue length, that is, the number of images in RAM
Disk, onboard satellite (POSAT) as time going. The
x axis indicates the time elapsed after service started,
while the y axis represents the image queue length. Fig-
ure 2 shows the system status when user request rate
is 20images/day, figure 3 shows user request rate in-
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creases to 35images/day. From these two figures, we
can see that at this stage, the onboard system is still
stable.

Figure 4: Satellite Onboard Image Queue Length: image arriv-

ing rate=40images/day

The following figure 4 shows the queue length sta-
tus when user request rate further increases to 40im-
ages/day, the onboard image number starts to build
up: after 50days, the number of onboard images is up
to 200. This continuously build-up curve indicates ser-
vice is out of capacity and system is no long stable.

The figure 5 shows an even worse case - when user
request rate is as high as 100images/day, the number of
onboard images is building up over 3000 after 50 days!

Figure 5: Satellite Onboard System Status: image arriving

rate=100images/day

From the above simulation results, we are able to
get some idea about onboard system status and so a
vivid estimation of the system capacity or limitation.
However, such kind of simulation does take long time
even by using our fast prediction method FPSCA.

1.2 Background of Queueing Theory

The second method is based on statistic mathematics,
or more specifically, to use queueing theory to analyse
the service.

A queueing system can be described as customers
arriving for service, waiting for service if it is not imme-
diately available, and if having waited for service, leav-
ing the system after being served (see figure 6). Such a
system can be subscribers’ calls arriving at a telephone
exchange, patients waiting in a doctor’s reception room,
machines waiting to be serviced by repairmen, and cars
waiting at a traffic intersection. This theory is based
on statistic mathematics and was first brought forward
almost a century ago. It has a couple of traditional
applications including telephony traffic analysis, which
was the first case of using queueing theory in solving
real world problem[14]. Recently queueing theory has
been widely used in computer performance analysis and
network traffic optimisation[15]. Other less significant
applications include machine repair efficiency analysis,
taxi stands control and so on[16][17].

Figure 6: Description of a queueing system.

The behaviour of queues is principally affected by
the following parameters: Arrival time distributions,
e.g. memoryless(M), deterministic(D), Erlang k(Ek),
general(G); Service time distribution, similar probabil-
ities to the above; Service discipline, i.e. how wait-
ing jobs are chosen for service and examples include
first-in-first-out (FIFO), last-in-first-out (LIFO), ser-
vice in random order (SIRO); Number of servers: sin-
gle server or multiple servers; Waiting space: how many
customers can be accommodated in the system (in-
cluding those being served). In order to describe a
queue model according to above specification, we can
use groups of symbols and separate each group by a
slash. The first group is Arrival time distribution, the
second is service time distribution, the third is the num-
ber of server, the fourth is the waiting room size and so
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on. For example: M/M/1[12], M/G/1[18], GI/G/1[19],
M/Gx/1[20][21][22], etc.

Although queueing theory is employed in wide spread
applications, it is the first time to apply it in our case,
satellite imaging service analysis.

2 Case Study of Directly Using

Queueing Theory

2.1 Imaging service contains two sub-
queues

In the satellite imaging service, which we propose to
use queueing theory to analyze, the whole process is
composed of two sub-queues which actually correspond
to the two service phases respectively.(see figure 7).

Figure 7: Satellite Imaging Service Data Flow - Two Subse-

quent Queues

The first one, as mentioned previously, is the image
taking process. It starts from user request and ends
when image is taken and buffered in the RAM disk, see
figure 7. This process is not the key part of our analysis
using queueing theory because it is not the bottleneck of
the system. In this process, request uploading is very
simple and only consumes very little resources. Then
image will be taken when the spacecraft is above the
target. The only waiting time comes from that satel-
lite need to rotate to be above the target, and in gen-
eral, no request is at conflict with any other. So such
waiting time can be precisely predicted using FPSCA
program. On the other hand, since the service disci-
pline in the process is not very explicit, a first come
request may be serviced later, and vice versa. It is
purely dependent on the satellite orbit and target loca-
tion. The queue discipline is neither FIFO nor LIFO,
which makes the application of queueing theory here
more difficult. Based on all of these reasons, we will
not discuss the details of the first queue in this paper.

The second queue in the whole service starts from
image hitting the RAM disk and ends when it is fin-
ished being downloaded. This is the bottleneck of the
system and it can not be predicted precisely. The wait-
ing time and system length behaves randomly. User
requests may be at conflict with each other. The queue
discipline here is simply FIFO, that is, an image stored
in ramdisk earlier will be downloaded to the ground be-
fore an image stored later.

2.2 User arrival in second sub-queue

As explained in last section, we will mainly study and
discuss the second sub-queue. Firstly, we will concen-
trate on user arrival distribution. The user arrival in
second queue is the image hitting the RAM disk. Then
the first question is what kind of distribution it fol-
lows. Since user request in previous queue is Poisson
or Memoryless and targets are assumed to distribute
uniformly, the image hitting RAM disk should be in-
dependent of each other, and the probability of such
an event should be the same in any fixed time inter-
vals as long as the interval is the same, which is the
characteristic of Poisson distribution. So it looks like
the user arrival in second queue should still be Poisson
distribution. Actually, simulation also proved so.

Figure 8: Image Arrival RAM Disk Distribution: user request

rate=20request/day

In figure 8 and 9, the x axis is the time interval
of two successive arriving requests in unit of day and
the y axis is the probability. The grey line is the user
arrival interval distribution in the first queue, and the
black line is the interval of image hitting RAM disk,
or the user request in the second queue. They are
very similar to each other. Bear in mind, if an event
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happens following Poisson distribution, the interval of
such occurrence is exponential distribution, which can
be clearly seen here. Figure 8 shows the user arrival
rate is 20request/day, and figure 9 is for arrival rate at
100request/day. We also tried other satellites and all
of these simulations gave us consistent results.

Figure 9: Image Arrival RAM Disk Distribution: user request

rate=100request/day

2.3 Service time distribution of the sec-
ond sub-queue

Now we can think about the service time distribution
of the second queue. First of all, we try to approximate
this to typical single service case, that is, in every ser-
vice period only one request will be processed, while in
a multiple service or batch service case, more than one
requests will be processed in a service instance. Then
we calculate the service time of each image as the dif-
ference between its arriving RAM disk and its finish
point of downloading using the orbit simulation pro-
gram FPSCA. After collecting such values for a lot of
events, we can draw the service time distribution.

From figure 10, we can see that the service time dis-
tribution is a general distribution which doesn’t have
a simple closed form expression. We can denote it as
dB

dt
. Then we use M/G/1 model to describe this queue,

which is Poisson arrival, general single service pattern
and 1 server. Following the theory of M/G/1 model, al-
though we no longer have a Markov process because of
the relaxation of the exponential assumption on service
times, it is imbedded within this non-Markov stochas-
tic process a Markov chain (referred to as an imbed-
ded Markov chain) at every service departure epoch.

Figure 10: Service time distribution

This allows the utilization of Markov-chain theory in
the analysis of the M/G/1 model. We define Pij to be
the transition probability, which represents the system
one-step transition probability from i state to j state.
We denote the transition probability matrix by[12]:

P = [Pij ],

where

Pij = Pr{system size immediately after a departure
point is j if system size after previous departure was i}

Pij =
∫ ∞

0

e−λt(λt)n

(j − i+ 1)!
dB(t), (j ≥ i− 1, i ≥ 1) (1)

Simplification results by defining

kn = Pr{n arrivals during a service time S=t}

=
∫ ∞

0

e−λt(λt)n

n!
dB(t) (2)

So that Pij can be seen to equal to kj−i+1 and [12]

P = [Pij ] =


k0 k1 k2 · · ·
k0 k1 k2 · · ·
0 k0 k1 · · ·
0 0 k0 · · ·
. . . . . . . . . . . . . . . .

 (3)

Assuming steady state is achievable, which means
the user arrival rate is less than service rate, the steady-
state probability vector, ~π = {πn}, can be found as the
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solution to the stationary equation (see [12] Appendix
4).

πj =
∞∑
0

πiPij ⇒ ~πP = ~π

This yields

πi = π0ki +
i+1∑
j=1

πjki−j+1 (4)

In order to compute equation (2) and then solve the
final steady state solution in closed form, we use La-
guerre Polynomials[13] to fit the showed curve in figure
10. The advantage of Laguerre Polynomials is that it is
a polynomial multiplied by an exponential term, which
makes the calculation for equation (2) easier by using
step-integration.

Figure 11: We used Laguerre Polynomials function to fit service

time curve, which gives a good fitting result.

Equations we used are as following:

ym(t) = Lm(βt)e
−βt

2

√
β

m!
(5)

yn(t) = Ln(βt)e
−βt

2

√
β

n!
(6)

where Lm and Ln are Laguerre Polynomials.

By using the orthorgonality of Laguerre Polynomi-
als, we can have:∫ ∞

0

ym(t)yn(t)dt =
1

m!n!

∫ ∞
0

Lm(βt)Ln(βt)e−βtdβt

(7)

let
x = βy (8)

∫ ∞
0

ym(t)yn(t) = σmn (9)

If let
dB

dt
=
∞∑
m=0

amym(t) (10)

We then have

am =
√
β

m!

∫ ∞
0

dB

dt
Lm(βt)dt (11)

Figure 12: Convergence of Fitted Function’s Coefficients.

By integrating
dB

dt
and using the recurrence for-

mula of Laguerre Polynomials, we calculated the co-

efficients am for
dB

dt
. The fitting result presented by

the diamonds is shown in figure11. They match the
solid line well and Figure12 shows the coefficeents con-
verge well. Then we worked out the transition matrix
and calculated the stationary distribution of the system
length (details see [12]pp.223-239). The result is shown
in figure 13. The x axis is the image queue length,
y axis is the probability. “*” represents the result of
queueing theory, while “+” shows the simulation re-
sult. Obviously, they don’t agree to each other. So we
concluded that directly using queueing theory M/G/1
model doesn’t suit for our satellite imaging service sec-
ond sub-queue.
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Figure 13: Directly using MG1 medol doesn’t give us a good

result.

3 Adaptation and Extension of

Queueing Theory

3.1 Re-defined service time of the sec-
ond sub-queue

Since our previous analysis using queueing theory doesn’t
match our service model well, we have to extend the
available models and make some adaptation on it. First
of all, we re-defined the service time in the second sub-
queue as the interval of successive image downloading
finish time. On the other hand, we also simplified our
satellite orbit model in FPSCA, in which case only
considers coarse search. Without considering refine-
ment in our satellite visible opportunity prediction, it
will miss some satellite passes to a specific ground sta-
tion. However, our coarse search predicts the main
passes during each day which have good communica-
tion quality while all of the missing passes have short
period and low elevation angle which actually make it
quite difficult for normal sequential data downloading.
So this simplification is not far away from the real world
application. Figure 14, 15 and 16 show the new service
time distribution for ground station with latitude and
longitude as (0,180), (30,180) and (80,180) repectively.
The x axis is the service time in day and the y axis is
the counts of occurance which can be further calculated
as probability.

From these figures, we noticed that the new service
time distribution is although still general distribution,
turns to be more like a deterministic distribution.

Figure 14: New Service Time Distribution for Simplified Model:

ground station location (0,180)

Figure 15: New Service Time Distribution for Simplified Model:

ground station location (30,180)

3.2 Result of adapted M/G/1 model

Generally, an imaging satellite in LEO will be visi-
ble from medium latitude ground stations for several
times each day with a good communication link (fig-
ures 14 - 16). Each time the satellite is capable of
downloading several images. In order to show the va-
lidity of the new service time definition in queueing
theory we use M/G/1 to test it. We assume the satel-
lite downloads only one image every pass and so re-
simulate the situation accordingly. Figure 17, 18 and
19 show the results of adapted M/G/1 model composed
of re-defined service time and simplified satellite orbital
model. For these three figures, the x axis is the queue-
ing length of the system, in other words is number of
images in the system; the y axis is the system steady
state. “*” represents the calculated probability from
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Figure 16: New Service Time Distribution for Simplified Model:

ground station location (80,180)

queueing theory, while “+” displays the one from sim-
ulation. Three figures show the results for different
ground station (0,180), (30,180) and (80,180) respec-
tively. All of them show us a good agreement between
simulation and queueing theory. Therefore the newly
defined service time makes sense in our application us-
ing queueing theory.

Figure 17: Steady State Solution for Simplified Model: ground

station location (0,180)

3.3 M/GX/1 bulk service and its result

3.3.1 Constant bulk size

In our previous analysis related to queueing theory, we
treated our imaging queue as a single service. That is,
every time the satellite passes over the ground station,
only one image will be downloaded. But in reality,

Figure 18: Steady State Solution for Simplified Model: ground

station location (30,180)

Figure 19: Steady State Solution for Simplified Model: ground

station location (80,180)

during each pass the satellite is capable of downloading
a couple of images. So we can no longer treat the model
as a single service M/G/1, and more appropriately, it
becomes M/Gx/1 which can process bulk requests in
each service. Unlike [22], in this section we treat the
bulk size, x as constant.

As our case is different from the general bulk service
model, we derived a new transition probability matrix:

Pij =



P0j = P1j
b−i∑
n=0

kn 0 < i < b+ 1, j = 0

kj−i+b 1 ≤ i ≤ j + b, j 6= 0
0 otherwise


(12)

and P0j = Pij .
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The new matix is as following:

x−1∑
n=0

kn kx kx+1 kx+2 · · ·

x−1∑
n=0

kn kx kx+1 kx+2 · · ·

x−2∑
n=0

kn kx−1 kx kx+1 · · ·

x−3∑
n=0

kn kx−2 kx−1 kx · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


(13)

where x - bulk size is a constant.

Figure 20: Steady State Solution accuracy for Simplified Model

when bulk service size is a constant: ground station location

(30,180)

Using the above formula, we have calculated the
error of the queueing theory steady-state probability
compared with the simulation from:

error = πsimPij − πsim (14)

where Pij is the queueing theory transition probability
and πsim is the steady-state probability from simula-
tion. Figure 20 shows the error result. We can see that
the maximum error is around 0.03.

Following figure 20 we can show for the steady-state
probability vector π in queueing theory and show the
comparison of this result with πsim in figure 21. The
RMS error is 0.0014. So both figures show a good agree-
ment between queueing theory and simulation.

Figure 21: Steady state solution comparison between queue-

ing theory and simulation result for Simplified Model when bulk

service size is a constant

3.3.2 Bulk service size is Gaussianly distributed

In the real world, however, how many images can be
downloaded during each satellite pass is not a constant.
It depends upon the satellite orbit and the ground sta-
tion location. To analyze it in a stochastic way, if the
bulk size distribution is independent of the service time,
we can have a universal expression for this kind of bulk
model based on the transition matrix outlined in last
subsection. The final transition matrix therefore is a
weighted sum of transition matrices with different bulk
size constants, and the weights are the probabilities of
different bulk sizes. In order to test this, we varied
the bulk size following a Gaussian distribution. The
results are shown in figure 22, presenting the steady-
state probability error of queueing theory from equa-
tion 14, and figure 23, which compares the difference
between steady-state probability vectors π from queue-
ing theory and simulation. This shows an RMS error
of 8.7e-04. In this case, again, queueing theory gives us
a good agreement with the simulation result.

3.3.3 Other system parameters can be achieved

Once we have found the system steady-state probabil-
ity vector π, then other parameters, such as the mean
queue length and the mean waiting time, can be found
directly from Little’s formula[12].
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Figure 22: Steady State Solution accuracy for Simplified Model

when bulk service size follows Guassion distribution: ground sta-

tion location (30,180)

4 Discussions and conclusion

We have used queueing theory to describe the image
capture and download queue on an Earth Observation
satellite. We have assumed that the image arrival rate
on the satellite is Poisson distributed and considered
various distributions for the download rate. Compari-
son of the statistical results from queuing theory with
numerical simulation show that these models are accu-
rate representations of the process, and can predict the
image storage requirement on the satellite.

The most significant advantages of using queueing
theory in this application over operation simulation is
that the former needs much less computational power.
The service time modelling needs to be done only once
for a specific space mission. Other calculations such as
numerical integration and eigen vector calculations are
also much simpler compared to astro-dynamics compu-
tation even for fast algorithms such as FPSCA. How-
ever, queueing theory also has some limitations.

In our previous analysis, we have assumed the dis-
tribution of ground targets of users follows a uniform
distribution which leads to a Poisson arrival in the sec-
ond sub-queue. However, in real applications, the tar-
get distribution could be different, such as imaging fol-
lows a sea ship route or only for a specific region. So we
changed the ground target distribution to be Gaussian,
as shown in figure 24.

We wish to know the distribution of the interval

Figure 23: Steady state solution comparison between queue-

ing theory and simulation result for Simplified Model when bulk

service size follows Gaussian distribution

between successive images arriving in the RAM disk:
whether it is still in exponential form implying Poisson
arrival or not. Figure 25 shows the result, it tells us that
if the ground target distribution is not uniform, image
arrival at the RAM disk, is the user arrival in the sec-
ond queue, is no longer Posson distributed. In this case,
for the second queue, it is no longer M/G/1 or M/Gx/1
queueing theory. We would use the GI/G/1 model for
this case. However, such a complicated mathematical
derivation is at odds with the motivation in this ap-
plication, that is, a more computationally inexpensive
way for imaging service analysis.

On the other hand, we have only considered one
single satellite (1 server) throughout our analysis. In
Earth Imaging and Observation applications, however,
constellations of satellites turn out to be a better strat-
egy. So if we want to apply queueing theory to ana-
lyze this kind of application, we need to think about
multiple servers instead of single server queues which
requires more complicated calculations.
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